Refined Binary Particle Swarm Optimization and Application in Power System
نویسندگان
چکیده
This paper presents new solution methods and results based on a refined binary particle swarm optimization (RBPSO) for solving the generation/pumping scheduling problem within the power system operation with pumped-storage units. The proposed RBPSO approach combines a basic particle swarm optimization (PSO) with binary encoding/decoding techniques. Complete solution algorithms and encoding/decoding techniques are proposed in the paper. The optimal schedules of both pumped-storage and thermal units are concurrently obtained within the evolutionary process of evaluation functions. Significantly, no hydro-thermal iteration is needed. The proposed approach is applied with success to an actual utility system, which consists of four pumped-storage units and 34 thermal units. The results indicate the attractive properties of the RBPSO approach in practical application, namely, a highly optimal solution cost and more robust convergence behavior. Key-Words: Refined binary particle swarm optimization, Power system, Pumped-storage.
منابع مشابه
Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملA particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation
In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملFrequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...
متن کامل